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Executive Summary

The purpose of the deliverable is to providaformation about the simulations of the systenfor
the evaluation of theperformancesof the choserfinal designof the cooling circuit.
This deliverable is linked toTask 5.4 Simulations and Resulsalysis which is aimed atthe
evaluation of the effectivenessf the vehicle cooling circuitoperation under different scanarios.
Simulations are madeby means ofthe model realized within Task 5.3 Cooling circuit layout
definition and sizirand presengd in D5.3 System modelling for the evaluation of the fina) Das&h
on the vehicle platform provided by NEVSand data collected from partners during Task 5.2
Data collection from other VVRd reported in D5.2Thorough data collection from othengestand
WPs and further analysis to build up a database
The baselinevehicle platform includes cooling circuit components and functionalities to which
the newIDMs must beadapted.
1. The Task started at M3 and is going to endon M27. D5.4 oResults analgis and final
report and/or scientific publicationsd i s JXhnuary3b'y2020.
2. This activity represents thecooling circuit simulation and is being used toerify the
effectivenessof the systemcontrol strategy to manage the overall circuit coolinginder
the constrains on maximum allowable temperatureand minimum volume flow rate.

Attainment of the objectives and if applicable, explanation of
deviations

The deliverablereports the activity carried out during the simulation of the cooling circuit
operdion in different scenariosand represents the final report of the activities conducted within
the Work Package 5 on the Cooling Circuitln particular, the expectedfinal output of Task 5.4
and of the entire WP5should have beera thorough analysis of allthe results obtained in the
simulation campaign, exhaustive enough to provide useful and reliable data for all the related
WPs.

To this aim, different operating conditionshave beensimulated for in-depth analysisof the
system behaviour. GFSuite has ben used fortransient simulations The cooling system model
has beenintegrated to azero dimensional nodel of the entire vehicleto simulate different
driving missions while the effectiveness of the cooling system in elevated temperature conditions
hasbeenestimated thanks to the precision dhe one-dimensional model.

The objectives defined in Task 5.4 have been thus attained and major results are reported in this
deliverable.
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Introduction

The aim of WP5 is to design and evaluate the cdaf circuit performance of the integrated
vehicle system, under the of minimum number of cooling elements, in order to design a single
cooling circuit for all devices.

A The first part of the WP5 is the collection of useful data coming from other WPs,

A which will be used as input for the second stage of the WR&here the integrated cooling

circuit has to be simulated.

At the end of the setup process a robust model of the vehicle cooling cirdugis beerdelivered
with the aim of simulating and verify the systemoperating conditions.

The cooling circuit basic concept has been defined in D5ocumentation of the basicconcept
of the cooling circuit [1].

Internal activities of the Thermal Team of NEVShad lead to the final layput of the cooling
circuit, whose complete schematic is provided ifrigure 1.

Refrigerant loop

HVAC coolant loop
Propulsion coolant loop
RESS coolant loop

Cabin air

! ¢ Drive train — Right side .
|
|

1

1
m Inverar o

1
. K

Figure 1. Thermal Schematic Layout for the DRIVEMODE demonstrator

As one can note from the figure, there @st four separate circuits:
1. Refrigerant loop
2. HVAC coolant loop
3. Propulsion loop
4. RESS coolant loop

For the cooling of OBC and 40012V DC/DC and 800V -400V DC/DC there is aseparate
loop, representend on the right of the figure. The others loop are all highhtegrated. WP5 is
focused only on the propulsion coolant loop, which, however, is influenced by the
HVAC/Refrigerant circuit through the condenser and by the RESS circuit through the RESS
radiator. Moreover, it must berecalled that the system operationis subject to the following
contraints:

1 Max Coolant temperature: 65°C

1 Min Flow rate@ maximum power: 10 |/min for each IDM
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Cooling Circuit Model

The circuit model has been thoroughly presented in D5[2] and isshown in Figure 2.
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Figure 2. Circuit schematic- Sketch from GT Suite model
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For the estimation of thethermal loads of inverter and electric machineas already reported in
D5.3, the power losse® have been calculateds a function of the instantaneousomponent
power 0, with the following equations:

1)

0 0 p - 2

C
o
I

0

Where for theinverter efficiency—  a constant average value equal to 97% has been used. This
value results in being a bit conservative with respect to the expected one.
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Figure3. Efficiency map of the-enachine

Thermal load of the emachine is instead evaluated by means of the eféncy map of the e
motor - provided by UL (WP3) and shown inFigure 3.

For the other components the following assumptions apply:

(@) the thermal load of the propulsion radiator is obviously an output of the analysis
rather than an input. All the data needed to model the heat transfer behavior of the
radiator have been provided by NEVS.

(b) thermal loads in hoses and pipes is zero. All the data needed to model the heat
transfer behavior of the pipes have been provided byEN'S.

- This project has received funBRIVEMODE

Horizon 2020 research and innovation programme unadet ggreement
N°769989



DRIVEMODE - Results analysis and finalpert and/or scientific publications 9
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Figure 4. Sketch of the cooling circuit modeling process

In order to properly evaluate themotor efficiency as a function of the instantaneous operating

conditions, a selfmade simulator, developed in Matlab/Simulink has been usedThe heat
rejection profiles obtained for each componerdre then used as input for the GTSuite model,

as shown in the schematic provided ifrigure 4.

The tool consists of a quasstatic forward-looking model of the entire vehicle. The employment
of such a tool allows for a more realistic evaluation of the energy conversion chain in the
vehicles, commonly evaluated by means of backwafdcing models In fact, the main weakness
of a backwardlooking approach is that the speed trace is assumed to be always met. Thus, it
evaluates a torque demand which can be different from the torque actually needed to follow a
speed trace, e.g., during accelerations. The used forwdrda c i n g

si mul

ator

model based on a PID controller, steadgtate performance maps for the-machines, a zere

dimensional equivalent circuit model for the battery, and computes vehicle velocity by solving

the longitudinal dynamics of the vehicle.

The vehicle used in simulatios isthe NEVS 93 SEDAN vehicle, whose main basiparameters

and performance indicators are listed ifable 1 and have been retrieved form D2.[5] and D2.2

[6].

Table 1. Characteristics of the reference vehicle

Basic Parameters

Gross Weight Vehicle 2160kg
Vehicle frontal crosssection 2.618 n?
Aerodynamic drag coefficient 0.29
Tire rolling resistane (dry asphalt) 0.02
Wheel radius 0.335m
Performance Indicators

Acceleration from 0 to 50 kmph 55s
Acceleration from 0 to 100 kmph 12s
Maximum climbing at 80 kmph 12%
Maximum climbing at 130 kmph 4%
Maximum Speed 150 kmph

Existing battery pack of 400 V DC is not applicable for the demonstration vehicleMain

characteristics for theB00 VDC battery system which will be used in the demonstration vehicle for
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DRIVEMODE project are listed inTable 2. The 800VDC battery system is under NEVS internal
development program anddata are not available for the system modeling.

Table 2. Battery pack main characteristics
Operating Voltage (Max/Nominal) 796/720 VDC
Operating Current (Max/Nomi nal) 280/140 A
Battery Capacity 46 kWh

Therefore, for the battery performancea zeroth order equivalent circuit model has been
employedto evaluate thebattery heat rejectionasfollowing:

0 0tY "Y€ 6 ©)
with the battery current@alculated as a function of the battergpern circuit voltagew the

power request)  and an equivalent internal resistanc "Y£ ¢function of the state of
charge (SoC)

@ ® 10 Y (4)

O o

A WLTC scenario hasbeen simulated in order to verify theffectiveness of the control strategy
of the cooling system.

In particular, the same control strategy used in the existingehicle hasbeen chosen foithe
demonstration one. This assumption has been done niay for its robustness and reliability,
related to the fact that it has been already used and tested.

In the meantime, the design of a novel control stratedyas been carried oytconcluding that it
is not safe toimplement it on the vehicle due to the lack of experimental data on the airtass
flow through the radiators at different conditionswhich might affect itsproper calibration.

In fact, the description of the air mass flow ad velocity through the radiatorsand/or underhood
flow calculations with regard to IDM compartment would require several data and an
insufficient amount of details can result in incorrect air flow quantities through different heat
exchangers and fan, hendeading to incorrect results for the simulation in total.

In the existing vehicle the pump speed is linearly increased as the coolant temperature at the
radiator inlet increases, while the fan is kept off until this temperature is below 60°C. For higher
values, it is switched on at its maximum capacity (i.e. input signalqual to90%).

The linear dependency of the pump speed (equivalent to the pump flow rate) on the coolant
temperature at the radiator inlet for the demonstration vehicle is provided Figure 5. It goes
from a minimum of 10 I/min as per the project constraint to a maximum flow rate equivalent to
the operation of the pump at its maximum speed.
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Figure 5. Pump flow rate as a function of cotant temperature at the radiator inlet
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WLTC Scenario

The control strategy effectiveness has been test over the WLTC standard driving cysleown
in Figure 6, under thefollowing additional assumptions:

Gear box efficiency: 097

Inverter Average Efficiency: 0.97
Gross Weight for the Vehicle
Condenser heat rate: 0 kW
Ambient Temperature: 40°C
Coolant Initial Temperature: 40°C
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Figure 6. WLTC Speed Trace

(=]

In order to obtain reliable results, the simulégons have been performed in transient modeén
particular, the speed trace and heat rejection profi@s a function of time have been directly
used in the GT-Suite model.

Figure 7 and Figure 8 show theheat rejections of the motor, inverter and battery with respect to
time. As one may note, there is a correspondence between the velocity profile and the heat
rejection, which is obviously affected by the road load.hese plots are mostly provided to prove
the soundness of the OD vehicle simulatorThose heat rejections have been calculated as
explained in the previous Section and, in particular, with the set &quationsfrom (1) to (4).
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Figure 8. Battery heat rejections vs time

Figure 9 shows the coolant temperature at radiator inlet and the coolant volumetric flow rate
through one pump with respect to timeThese results have been obtained with the 1D cooling
circuit model, employing the heat rejections providedh Figure 7 and Figure 8 as inputs As one

can note, the projectconstrains mentioned in the Introduction are always met as the coolant
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temperature never overcomes 65°C while the coolant volumetric flow rate across each pump
nevers goes below 10 I/min.

It is immediate to observe the correspondence of the volumetsicdlte with the coolant temperature
as per the control strategy showrrigure 5 and, snce the temperature of the coolant is always lower
than 60°C, the fan is never switched d@ns alsoworth noting that, at the very begingirf the
driving cycle characterized by low vehicle spegtle coolant temperatures dine highestin fact,

if on one handhe low thermal loads of the components (Sigeare 7 andFigure 8) would correspond

to a low coolant temperature, on the other hand the very low mass floo¥ tlageair passinthrough

the radiator, dramatically affects the heat removal from the coolant and a highespeeds are
required to compensate this effect.

Figure 9. Coolant temperature at radiator inlet and coolant volumetric flow rate vs time

Another check, mainly required by a safely operation and lifetime preservation for motor and
inverter, has been done on the temperature variatioretveen the inlet and the outlet of those
components, which are provided inFigure 10 and Figure 11. As required for the inverter
preservation in WP4, it has been verified thatthe coolant temperature variabn across this
component never overcomes 2°C.
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